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WALL-THICKNESS E F F E C T  ON T H E  T H E R M O H Y D R A U L I C  
S T A B I L I T Y  O F  A H O M O G E N E O U S  T W O - P H A S E  F L O W  

Yu. B. Zudin UDC 621.59.01 

An approximate analytical solution of the problem of thermohydraulic stabili~ of a homogeneous two- 
phase flow is obtained with allowance for the effect of the channel-wall thickness. 

As is known [1, 2], when a homogeneous two-phase flow moves in a heated channel, there can de- 
velop thermohydraulic instability, which is related to the "lagging interaction" of the flow rate, density, and 
pressure disturbances and has the following mechanism. A random disturbance of the flow rate at the begin- 
ning of the channel changes the amount of heat received by unit mass of the heat carrier. This results in a 
change in the vapor content and, consequently, the density of the two-phase flow. Since the flow-rate distur- 
bances propagate practically instantaneously and the density disturbances propagate approximately at the veloc- 
ity of the heat carrier, "kagging" pressure disturbances are generated at the channel outlet. The pressure drop 
between the inlet and the outlet of the channel is set externally and is independent of the hydrodynamic con- 
ditions of the heat carrier; therefore a feedback develops in the flow that causes a pressure change at the chan- 
nel inlet that initiates a new disturbance of the flow rate and so on. 

A one-dimensional representation of the problem of thermohydraulic instability includes the equations 
[3] of: continuity 

3pu ~ + T = o ,  

motion 

and energy 

II Old + pu = - ' ~ -  

bh 01_2 = 4_~ 
P--ffft + 9u ~z D " 

Use of the linear dependence of the specific volume of the homogeneous two-phase flow on its en- 
thalpy allows, after some transformations, the initial system of the equations to be written in the form [4] 

~u 
=~2, (1) 

¢3z 

Ov Ov (2) 
T t  + u Tzz = v  , 
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Fig. 1. Expansion parameter of the flow at the stability boundary vs. Biot 
number for a thick wall (a) and vs. dimensionless wall thickness for the 
cases T= = const [b: 1) Bi = 5; 2) 10; 3) 20] and q~ = const [c: 1) Bi = 
1; 2) 2; 3) 5]. 

a.  a .  ¢ u z ap 
-~-t + u ~z  +-2f2 = - v  ~-~z" 

(3) 

Here ~ = 4q/rpv; r is the specific heat of the phase transition; Pv is the density of the saturated vapor. 
In the majority of works [1-4], the methods of the linear theory of automatic control [5] are used for 

analyzing the thermohydraulic instability. The present investigation is aimed at determination of the stability 
boundary of a homogeneous two-phase flow with allowance for the effect of the channel-wall thickness. For 
this, use is made of  results of the solution [6] of the boundary-value problem for a two-dimensional unsteady 
equation of heat conduction in the wall with a periodic boundary condition of the third kind. 

The known procedure of linear analysis of hydrodynamic instability [7] leads to the following system 
of equations for pulsating quantities: 

au ~q  (4) 
m 

az 

av' + u 3v' , aT , 

3-7 D--T, + "  5-2_-= 
(5) 

Ou' + _ Ou' ,3u  + ~ - , . 7, 3p' , a,o (6) 
at "'-~'~+ .u -,-~-~--+, az 

Z U ~ ' - - = 0 .  

As boundary conditions for (4)-(6), the conditions of undisturbance for the specific volume at the channel inlet 

and pressure drop along the channel 

are prescribed. 

v] = 0 (7) 

p 2 - p ]  =0  (8) 

A solution of the system of equations (4)-(8) leads to the following dispersion relation of the linear 
analysis of stability: 

// 2+A / 
(2 - o~) (1 + a )  [A - 2 (1 + a )  eo] ~E l+a - 1 + a  (2 +A) (E a ~  - 1) = 0 ,  

(9) 
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where E = K2/KI = ~2/i;1 = 1 + ~2l/-ffl is the "expansion parameter" of the homogeneous two-phase flow be- 
tween the inlet and the outlet; A is the "contingency parameter" dependent on the thermophysical properties 
and the wall thickness of  the channel as well as on the conditions of external hea tsupply  [6]: A = Bi tanh 8 
at T= = const; A = Bi cot 8 at q= = const; Bi = ~-/4f~XwPwCw is the Biot number; 8 = 8~rdaw/~ is the dimen- 
sionless wall thickness. 

The sought dispersion relation is the dimensionless frequency of pulsations 

0 ) = 7 + i [ 3 ,  

where the characteristic frequency f2 = 4q/rp,,D is adopted as a scale. 

Equality (9) is equivalent to two relations determining the real ~, and imaginary [3 parts of the complex 
quantity co. Here, 1~ characterizes the frequency of periodic pulsations of the disturbed parameters, ~' describes 
the flow mode: stable (y<0) ,  neutral (y = 0), or unstable (7>0) .  Assuming 7 - -  0 [~ = il3 in (9)], we arrive at 
the system of equations determining the stability boundary: 

A 

2 [a - (1 + a )  [32,] + (1 + a )  E, l+a cos ([3, In E,) = 0 ,  (10) 

A 

5~, + E~ +A sin (~, In E,) = 0 ,  (1 1) 

the approximate solution of which is of the form 

A 
R e - FI+A (12)  

A 

El, +A In 2 E, = 8rt2. (13) 

Consider the effect of the channel-wall thickness on the position of the stability boundary in accord- 
ance with relation (13). 

For the case of a thick wall (8_> 1), there is a region of self-similarity with respect to the thickness. 
Here, the influence of external heat supply is absent, while the parameter of flow expansion at the stability 
boundary depends on the Biot number (see Fig. la). 

For the case T~ = const, with decrease in the wall thickness the stability boundary in the limit shifts 
to infinity. With increase in the wall thickness, the quantity E,  asymptotically tends to a maximum dependent 
on the Biot number (see Fig. lb). 

For the case q~ = const, as the wall thickness decreases to zero the expansion parameter of the flow at 
the stability boundary attains its minimum possible value E , - -9 .3 .  With increase in the wall thickness, the 
quantity E,  reaches an asymptotics similar to the case T~ = const (see Fig. l c). 

For all the cases considered, the frequency of periodic pulsations of the disturbed parameters at the 
stability boundary ~, is determined from relation (12). 

Thus, the minimum of the thermohydraulic stability is attained in the limit of zero thermal conductivity 
of  a thick wall and in the limit of  zero thickness of  the wall at q~ = const. With the thermal conductivity of  
the thick wall tending to infinity and with the wall thickness tending to zero at T~ = const the limit of ther- 
mohydraulic stability tends to infinity (E,--~ oo). 

Note that the development of  disturbances (with allowance for the interaction of their amplitudes and 
phases) after stability loss by the flow can be analyzed only within the framework of the statement and solu- 
tion of the corresponding nonlinear problem [8]. 
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N O T A T I O N  

t, time; z, longitudinal coordinate; u, longitudinal velocity; p, density; v, specific volume; ~., thermal 
conductivity; a, thermal diffusivity; c, specific heat; ~, coefficient of hydraulic resistance; p, pressure; h, en- 
thalpy; D, hydraulic diameter of the channel; 1, channel length; 8, thickness of the channel wall; q, heat-flux 
density; cq heat-transfer coefficient; I), scale of the pulsation frequency; to, dimensionless pulsation frequency. 
Superscripts: line, stationary value; prime, pulsating value. Subscripts: 1, channel inlet; 2, channel outlet; w, 
channel wall, oo , external (heated) channel surface; *, stability boundary. 
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